Mathematical Foundations of Infinite-Dimensional Statistical Models:

2.4 Anderson's Lemma, Comparison and Sudakov's Lower

Bound

presented by Boyoung Kim

Seoul National University

August 05, 2018

Table of Contents

- 2.4 Anderson's Lemma, Comparison and Sudakov's Lower Bound
 - 2.4.1 Anderson's Lemma
 - 2.4.2 Slepian's Lemma and Sudakov's Minorisation

Anderson's Lemma, Comparison and Sudakov's Lower Bound

- ▶ Obtain a lower bound for $E \sup_t X(t)$ in terms of the metrix entropy of the (pseudo-)metric space (T, d_X) , where X is a Gaussian process and $d_X^2(s, t) = E(X(t) X(s))^2$.
- ► Anderson's Inequality
 - It is regarding the probability, relative to a certered Gaussian measure on \mathbb{R}^n , of a convex symmetric set and its translates,
 - It is related to the fact that centered Gaussian measures on \mathbb{R}^n are log-concave.
- Slepian's lemma : comparing the distributions of the suprema of the processes.

2.4.1 Anderson's Lemma

Lemma 2.4.1

- A set C in vector space is convex and symmetric if $\sum_{i=1}^{n} \lambda_i x_i \in C$ whenever $x_i \in C$ and $\lambda_i \in \mathbb{R}$ satisfy $\sum_{i=1}^{n} |\lambda_i| = 1, n < \infty$.
- ▶ Given two sets A and B in vector space, their Minkowski addition is $A + B = \{x + y : x \in A, y \in B\}$ and λA is defined as $\lambda A = \{\lambda x : x \in A\}$. In this subsection, m will stand for Lebesgue measure on \mathbb{R} for any n.

Lemma 2.4.1

Let A and B be Borel measurable sets in \mathbb{R} . Then

$$m(A+B) \geq m(A) + m(B)$$
.

5/22

Precopa-Leindler theorem

Theorem 2.4.2 (Precopa-Leindler theorem)

Let f, g, φ be Lebesgue measurable functions on \mathbb{R}^n taking values in $[0, \infty]$ and satisfying, for some $0 < \lambda < 1$ and all $u, v \in \mathbb{R}^n$,

$$\varphi(\lambda u + (1 - \lambda)v) \ge f^{\lambda}(u)g^{1 - \lambda}(v). \tag{2.49}$$

Then

$$\int \varphi \ dm \ge \left(\int f \ dm\right)^{\lambda} \left(\int g \ dm\right)^{1-\lambda}. \tag{2.50}$$

Proof.

The proof is by induction on the dimension n.

For n = 1, theorem 2.4.1 is used.

Log-concavity of Gaussian measures in \mathbb{R}^n

Centered Gaussian measures on \mathbb{R}^n are log concave.

Theorem 2.4.3 (Log-concavity of Gaussian measures in \mathbb{R}^n)

Let μ be a centered Gaussian measure on \mathbb{R}^n . Then, for any Borel sets A, B in \mathbb{R}^n and $0 \le \lambda \le 1$, we have

$$\mu(\lambda A + (1 - \lambda)B) \ge (\mu(A))^{\lambda} (\mu(B))^{1-\lambda}. \tag{2.51}$$

Anderson's lemma

Theorem 2.4.4 (Anderson's lemma)

Let $X=(g_1,\ldots,g_n)$ be a centred jointly normal vector in \mathbb{R}^n , and let C be a measurable convex symmetric set of \mathbb{R}^n . Then, for all $x\in\mathbb{R}^n$,

$$Pr\{X+x\in C\}\leq Pr\{X\in C\}. \tag{2.53}$$

Proof.

Let $\mu = L(X)$. Let A = C + x, B = C - x, and $\lambda = 1/2$ in (2.51) and by summetry of μ and symmetry of μ , $\mu(A) = \mu(B)$. So we obtain $\mu(C) \ge \mu(C + x)$.

Theorem 2.4.5

Theorem 2.4.4 Extends to infinite dimensions.

Theorem 2.4.5

Let B be a separable Banach space, let X be a B-valued centred Gaussian random variable and let C be a closed, convex, symmetric subset of B. Then, for all $x \in B$,

$$Pr\{X + x \in C\} \le Pr\{X \in C\}. \tag{2.53}$$

In particular, $Pr\{||X|| \le \epsilon\} > 0$, for all $\epsilon > 0$.

Proof.

By Hahn-Banach separation theorem, ... For the last claim, apply the first part to closed balls $C_i = \{x : \|x - x_i\| \le \epsilon\}$ for x_i countable dense subset of B.

2.4.2 Slepian's Lemma and Sudakov's Minorisation

2.4.2 Slepian's Lemma and Sudakov's Minorisation

- Useful identity regarding derivatives of the multidimensional normal density.
- Let $f(C,x) = ((2\pi)^n detC)^{-1/2} e^{-xC^{-1}x^T/2}$ be the N(0,C) density in \mathbb{R}^n , where $C = (C_{ij})$ is an $n \times n$ symmetric positive definite matrix $x = (x_1, \dots, x_n)$. Then $\partial f(C,x) = \partial^2 f(C,x) = \partial^2 f(C,x)$

$$\frac{\partial f(C,x)}{\partial C_{ij}} = \frac{\partial^2 f(C,x)}{\partial x_i x_j} = \frac{\partial^2 f(C,x)}{\partial x_j x_i}, 1 \le i < j \le n.$$
 (2.54)

Theorem 2.4.7

Theorem 2.4.7

Let $X = (X_1, ..., X_n)$ and $Y = (Y_1, ..., Y_n)$ be centred normal vectors in \mathbb{R}^n such that $EX_i^2 = EY_j^2 = 1, 1 \le i, j \le n$. Set, for each $1 \le i < j \le n$, $C_{ij}^1 = E(X_iX_j), C_{ij}^0 = E(Y_iY_j)$ and $\rho_{ij} = \max\{|C_{ij}^0|, |C_{ij}^1|\}$. Then for any $\lambda_i \in \mathbb{R}$, $\Pr\bigcap_{i=1}^n \{X_i \le \lambda_i\} - \Pr\bigcap_{i=1}^n \{Y_i \le \lambda_i\} \le \frac{1}{2\pi} \sum_{1 \le i < j \le n} (C_{ij}^1 - C_{ij}^0)^+ \frac{1}{(1 - \rho_{ij}^2)^{1/2}} \exp\left(-\frac{(\lambda_i^2 + \lambda_j^2)/2}{1 + \rho_{ij}}\right).$ (2.55)

Moreover, if $\mu_i \leq \lambda_i$ and $\nu = \min\{|\lambda_i|, |\lambda_i| : i = 1, ..., n\}$, then

$$\left| \Pr \bigcap_{i=1}^{n} \{ \mu_{i} \leq X_{i} \leq \lambda_{i} \} - \Pr \bigcap_{i=1}^{n} \{ \mu_{i} \leq Y_{i} \leq \lambda_{i} \} \right| \leq \frac{2}{\pi} \sum_{1 \leq i < j \leq n} |C_{ij}^{1} - C_{ij}^{0}| \frac{1}{(1 - \rho_{ij}^{2})^{1/2}} \exp \left(-\frac{\nu^{2}}{1 + \rho_{ij}} \right). \tag{2.56}$$

Slepian's lemma

It allows comparing the distributions of the suprema of X(t) and Y(t) if the covariance of one of the processes dominates the other.

Theorem 2.4.8 (Slepian's lemma)

Let $X=(X_1,\ldots,X_n)$ and $Y=(Y_1,\ldots,Y_n)$ be centred jointly normal vectors in \mathbb{R}^n such that

$$E(X_iX_j) \le E(Y_iY_j) \text{ and } EX_i^2 = EY_i^2 \text{ for } 1 \le i, j \le n.$$
 (2.58)

Then, for any $\lambda_i \in \mathbb{R}$, i < n.

$$Pr\left(\bigcap_{i=1}^{n} \{Y_i > \lambda_i\}\right) \le Pr\left(\bigcap_{i=1}^{n} \{X_i > \lambda_i\}\right),$$
 (2.59)

and therefore.

$$E \max_{i \le n} Y_i \le E \max_{i \le n} X_i \tag{2.60}$$

Remark 2.4.9

Comparison of expected values of the maximum of absolute values.

Remark

For X_i symmetric, for any $i_0 \in \{1, ..., n\}$,

$$E\max_{i\leq n}X_i\leq E\max_{i\leq n}|X_i|\leq E|X_{i_0}|+E\max_{i,j}|X_i-X_j|\leq E|X_{i_0}|+2E\max_{i\leq n}X_i.$$

Corollary 2.4.10

It is easier because it does not require $EX_i^2 = EY_i^2, i \le n$.

Corollary 2.4.10

Let $X=(X_1,\ldots,X_n)$ and $Y=(Y_1,\ldots,Y_n)$ be two centred, jointly normal vectors in \mathbb{R}^n , and assume that

$$E(Y_i - Y_j)^2 \le E(X_i - X_j)^2, i, j \in \{1, ..., n\}.$$

Then

$$E \max_{i \le n} Y_i \le 2E \max_{i \le n} X_i.$$

Lemma 2.4.11

Finally, we will apply the comparison results to obtain a lower bound for $E \sup_t X(t)$ where X is a Gaussian process.

The entropy lower bound will follow from the following evaluation of the maximum of a finite number of independent normal variables.

Lemma 2.4.11

Let $g_i, i \in \mathbb{N}$, be independent standard normal random variables. Then

- a. $\lim_{n \to \infty} \frac{E \max_{i \le n} |g_i|}{\sqrt{2log \ n}} = 1$, and
- b. There exists $K < \infty$ such that, for all n > 1,

$$K^{-1}(\log n)^{1/2} \leq E \max_{i \leq n} g_i \leq E \max_{i \leq n} |g_i| \leq K(\log n)^{1/2}.$$

Sudakov's lower bound

Recall that given a (pseudo-) metric space (T, d), $N(T, d, \epsilon)$ denotes the ϵ -covering number of (T, d) and the logarithm of the covering number of (T, d) is known as its metric entropy.

Theorem 2.4.12 (Sudakov's lower bound)

There exists $K < \infty$ such that if $X(t), t \in T$, is a centred Gaussian process and $d_x(s,t) = (E(X(t)-X(s))^2)^{1/2}$ denotes the associated pseudo-metric on T, then, for all $\epsilon > 0$,

$$\epsilon \sqrt{\textit{log N}(T, \textit{d}_{x}, \epsilon)} \leq \textit{K} \sup_{S \subset T, \textit{S finite}} \textit{E} \max_{t \in S} \textit{X}(t).$$

17/22

Sudakov's theorem

Corollary 2.4.13 (Sudakov's theorem)

Let $X(t), t \in T$, be a centred Gaussian process, and let d_X be the associated pseudo-distance. If $\liminf_{\epsilon \downarrow 0} \epsilon \sqrt{logN(T,d_X,\epsilon)} = \infty$, then $\sup_{t \in T} |X(t)| = \infty$ a.s., so X is not sample bounded.

This corollary shows that if a centered Gaussian process X is sample bounded, then the covering numbers $N(T, d_X, \epsilon)$ are all finite.

Corollary 2.4.14

Stronger version:

Corollary 2.4.14

Let $X(t), t \in T$, be a sample continuous centred Gaussian process. Then,

$$\lim_{\epsilon \to 0} \epsilon \sqrt{\log N(T, d_X, \epsilon)} = 0$$

4□ > 4□ > 4 = > 4 = > = 900

19/22

Comparison with the upper bound in Theorem 2.3.6.

Lower bound for $E \sup_{t \in \mathcal{T}} |X(t)|$ in Theorem 2.4.12 and the upper bound in Theorem 2.3.6 for X a centred Gaussian process with $X(t_0)=0$ a.s. for some $t_0 \in \mathcal{T}$.

Note that if $logN(T, d_X, 1/\tau)$ is bounded above and below by a constant times a regularly varing function of τ , then both bounds combine to give that there exists $K < \infty$ such that

$$\frac{1}{K}\sigma_{X}\sqrt{\log N(T,d_{x},\sigma_{X})} \leq E \sup_{t \in T}|X(t)| \leq K\sigma_{X}\sqrt{\log N(T,d_{x},\sigma_{X})}$$
 (2.61)

(Appendix) Theorem 2.3.6

Theorem 2.3.6

Let (T,d) be a pseudo-metric space, and let X(t), $t \in T$ be a stochastic process sub-Gaussian with respect to the pseudo-distance d, that is, one whose increments satisfy condition (2.36). Then, for all finite subsets $S \subseteq T$ and points $t_0 \in T$, the following inequalities hold:

$$E \max_{t \in S} |X(t)| \le E|X(t_0)| + 4\sqrt{2} \int_0^{D/2} \sqrt{\log 2N(T, d, \epsilon)} d\epsilon, \qquad (2.37)$$

where D is the diameter of (T, d), and

$$E \max_{s,t \in S, d(s,t) \le \delta} |X(t) - X(s)| \le (16\sqrt{2} + 2) \int_0^{\delta} \sqrt{\log 2N(T,d,\epsilon)} d\epsilon, \quad (2.38)$$

for all $\delta > 0$, where the integrals are taken to be 0 if D = 0.

(Appendix) Definition 2.2.1, 2.2.3

Definition 2.2.3

확률과정 $X_t(t \in T)$ 가 표본유계 (sample bounded) \Leftrightarrow 어떤 X 의 version \tilde{X} 의 sample path 들이 거의 모든 ω 에 대해 고르게 유계, 즉 $\sup_{t \in T} |\tilde{X}| < \infty$ a.s.. (T,d) 가 (유사) 거리공간일 때 X 가 표본연속 (sample continuous) \Leftrightarrow 어떤 X 의 version \tilde{X} 의 sample path 들이 거의 모든 ω 에 대해 유계이고 고르게 연속.

Definition 2.2.1

지표집합 T에 대한 확률과정 X, Y 가 각각의 유한차원 분포가 같으면 각각을 서로에 대한 version 이라 한다.