Mathematical Foundations of Infinite-Dimensional Statistical Models:

2.4 Anderson's Lemma, Comparison and Sudakov's Lower

Bound
presented by Boyoung Kim

Seoul National University

August 05, 2018

Table of Contents

2.4 Anderson's Lemma, Comparison and Sudakov's Lower Bound
2.4.1 Anderson's Lemma
2.4.2 Slepian's Lemma and Sudakov's Minorisation

Anderson's Lemma, Comparison and Sudakov's Lower Bound

- Obtain a lower bound for $E \sup _{t} X(t)$ in terms of the metrix entropy of the (pseudo-)metric space $\left(T, d_{X}\right)$, where X is a Gaussian process and $d_{X}^{2}(s, t)=E(X(t)-X(s))^{2}$.
- Anderson's Inequality
- It is regarding the probability, relative to a certered Gaussian measure on \mathbb{R}^{n}, of a convex symmetric set and its translates,
- It is related to the fact that centered Gaussian measures on \mathbb{R}^{n} are log-concave.
- Slepian's lemma : comparing the distributions of the suprema of the processes.

2．4．1 Anderson＇s Lemma

4ロ $\quad 4$ 可 1 三

- A set C in vector space is convex and symmetric if $\sum_{i=1}^{n} \lambda_{i} x_{i} \in C$ whenever $x_{i} \in C$ and $\lambda_{i} \in \mathbb{R}$ satisfy $\sum_{i=1}^{n}\left|\lambda_{i}\right|=1, n<\infty$.
- Given two sets A and B in vector space, their Minkowski addition is $A+B=\{x+y: x \in A, y \in B\}$ and λA is defined as $\lambda A=\{\lambda x: x \in A\}$. In this subsection, m will stand for Lebesgue measure on \mathbb{R} for any n .

Lemma 2.4.1
Let A and B be Borel measurable sets in \mathbb{R}. Then

$$
m(A+B) \geq m(A)+m(B)
$$

Precopa-Leindler theorem

Theorem 2.4.2 (Precopa-Leindler theorem)
Let f, g, φ be Lebesgue measurable functions on \mathbb{R}^{n} taking values in $[0, \infty]$ and satisfying, for some $0<\lambda<1$ and all $u, v \in \mathbb{R}^{n}$,

$$
\begin{equation*}
\varphi(\lambda u+(1-\lambda) v) \geq f^{\lambda}(u) g^{1-\lambda}(v) . \tag{2.49}
\end{equation*}
$$

Then

$$
\begin{equation*}
\int \varphi d m \geq\left(\int f d m\right)^{\lambda}\left(\int g d m\right)^{1-\lambda} . \tag{2.50}
\end{equation*}
$$

Proof.
The proof is by induction on the dimension n.
For $n=1$, theorem 2.4.1 is used.

Log-concavity of Gaussian measures in \mathbb{R}^{n}

Centered Gaussian measures on \mathbb{R}^{n} are log concave.
Theorem 2.4.3 (Log-concavity of Gaussian measures in \mathbb{R}^{n})
Let μ be a centered Gaussian measure on \mathbb{R}^{n}. Then, for any Borel sets A, B in \mathbb{R}^{n} and $0 \leq \lambda \leq 1$, we have

$$
\begin{equation*}
\mu(\lambda A+(1-\lambda) B) \geq(\mu(A))^{\lambda}(\mu(B))^{1-\lambda} . \tag{2.51}
\end{equation*}
$$

Anderson's lemma

Theorem 2.4.4 (Anderson's lemma)
Let $X=\left(g_{1}, \ldots, g_{n}\right)$ be a centred jointly normal vector in \mathbb{R}^{n}, and let C be a measurable convex symmetric set of \mathbb{R}^{n}. Then, for all $x \in \mathbb{R}^{n}$,

$$
\begin{equation*}
\operatorname{Pr}\{X+x \in C\} \leq \operatorname{Pr}\{X \in C\} . \tag{2.53}
\end{equation*}
$$

Proof.
Let $\mu=L(X)$. Let $A=C+x, B=C-x$, and $\lambda=1 / 2$ in (2.51) and by summetry of μ and symmetry of $C, \mu(A)=\mu(B)$. So we obtain $\mu(C) \geq \mu(C+x)$.

Theorem 2.4.5

Theorem 2.4.4 Extends to infinite dimensions.
Theorem 2.4.5
Let B be a separable Banach space, let X be a B-valued centred Gaussian random variable and let C be a closed, convex, symmetric subset of B. Then, for all $x \in B$,

$$
\begin{equation*}
\operatorname{Pr}\{X+x \in C\} \leq \operatorname{Pr}\{X \in C\} \tag{2.53}
\end{equation*}
$$

In particular, $\operatorname{Pr}\{\|X\| \leq \epsilon\}>0$, for all $\epsilon>0$.

Proof.

By Hahn-Banach separation theorem, ... For the last claim, apply the first part to closed balls $C_{i}=\left\{x:\left\|x-x_{i}\right\| \leq \epsilon\right\}$ for x_{i} countable dense subset of B.
2.4.2 Slepian's Lemma and Sudakov's Minorisation

2.4.2 Slepian's Lemma and Sudakov's Minorisation

- Useful identity regarding derivatives of the multidimensional normal density.
- Let $f(C, x)=\left((2 \pi)^{n} \operatorname{det} C\right)^{-1 / 2} e^{-x C^{-\mathbf{1}} x^{T} / 2}$ be the $N(0, C)$ density in \mathbb{R}^{n}, where $C=\left(C_{i j}\right)$ is an $n \times n$ symmetric positive definite matrix $x=\left(x_{1}, \ldots, x_{n}\right)$. Then

$$
\begin{equation*}
\frac{\partial f(C, x)}{\partial C_{i j}}=\frac{\partial^{2} f(C, x)}{\partial x_{i} x_{j}}=\frac{\partial^{2} f(C, x)}{\partial x_{j} x_{i}}, 1 \leq i<j \leq n . \tag{2.54}
\end{equation*}
$$

Theorem 2.4.7

Theorem 2.4.7
Let $X=\left(X_{1}, \ldots, X_{n}\right)$ and $Y=\left(Y_{1}, \ldots, Y_{n}\right)$ be centred normal vectors in \mathbb{R}^{n} such that $E X_{i}^{2}=E Y_{j}^{2}=1,1 \leq i, j \leq n$. Set, for each $1 \leq i<j \leq n$, $C_{i j}^{1}=E\left(X_{i} X_{j}\right), C_{i j}^{0}=E\left(Y_{i} Y_{j}\right)$ and $\rho_{i j}=\max \left\{\left|C_{i j}^{0}\right|,\left|C_{i j}^{1}\right|\right\}$. Then for any $\lambda_{i} \in \mathbb{R}$,

$$
\begin{equation*}
\operatorname{Pr} \bigcap_{i=\mathbf{1}}^{n}\left\{X_{i} \leq \lambda_{i}\right\}-\operatorname{Pr} \bigcap_{i=\mathbf{1}}^{n}\left\{Y_{i} \leq \lambda_{i}\right\} \leq \frac{\mathbf{1}}{2 \pi} \sum_{\mathbf{1} \leq i<j \leq n}\left(C_{i j}^{\mathbf{1}}-C_{i j}^{\mathbf{0}}\right)^{+} \frac{\mathbf{1}}{\left(1-\rho_{i j}^{\mathbf{2}}\right)^{\mathbf{1 / 2}}} \exp \left(-\frac{\left(\lambda_{i}^{\mathbf{2}}+\lambda_{j}^{\mathbf{2}}\right) / \mathbf{2}}{\mathbf{1}+\rho_{i j}}\right) \tag{2.55}
\end{equation*}
$$

Moreover, if $\mu_{i} \leq \lambda_{i}$ and $\nu=\min \left\{\left|\lambda_{i}\right|,\left|\lambda_{i}\right|: i=1, \ldots, n\right\}$, then

$$
\begin{equation*}
\left|\operatorname{Pr} \bigcap_{i=1}^{n}\left\{\mu_{i} \leq X_{i} \leq \lambda_{i}\right\}-\operatorname{Pr} \bigcap_{i=1}^{n}\left\{\mu_{i} \leq Y_{i} \leq \lambda_{i}\right\}\right| \leq \frac{\mathbf{2}}{\pi} \sum_{\mathbf{1} \leq i<j \leq n}\left|C_{i j}^{\mathbf{1}}-C_{i j}^{\mathbf{0}}\right| \frac{\mathbf{1}}{\left(1-\rho_{i j}^{\mathbf{2}}\right)^{\mathbf{1 / 2}}} \exp \left(-\frac{\nu^{\mathbf{2}}}{1+\rho_{i j}}\right) . \tag{2.56}
\end{equation*}
$$

Slepian's lemma

It allows comparing the distributions of the suprema of $X(t)$ and $Y(t)$ if the covariance of one of the processes dominates the other.

Theorem 2.4.8 (Slepian's lemma)
Let $X=\left(X_{1}, \ldots, X_{n}\right)$ and $Y=\left(Y_{1}, \ldots, Y_{n}\right)$ be centred jointly normal vectors in \mathbb{R}^{n} such that

$$
\begin{equation*}
E\left(X_{i} X_{j}\right) \leq E\left(Y_{i} Y_{j}\right) \text { and } E X_{i}^{2}=E Y_{i}^{2} \text { for }, 1 \leq i, j \leq n \tag{2.58}
\end{equation*}
$$

Then, for any $\lambda_{i} \in \mathbb{R}, i \leq n$,

$$
\begin{equation*}
\operatorname{Pr}\left(\bigcap_{i=1}^{n}\left\{Y_{i}>\lambda_{i}\right\}\right) \leq \operatorname{Pr}\left(\bigcap_{i=1}^{n}\left\{X_{i}>\lambda_{i}\right\}\right) \tag{2.59}
\end{equation*}
$$

and therefore,

$$
\begin{equation*}
E \max _{i \leq n} Y_{i} \leq E \max _{i \leq n} X_{i} \tag{2.60}
\end{equation*}
$$

Remark 2.4.9

Comparison of expected values of the maximum of absolute values.

Remark

For X_{i} symmetric, for any $i_{0} \in\{1, \ldots, n\}$,
$E \max _{i \leq n} X_{i} \leq E \max _{i \leq n}\left|X_{i}\right| \leq E\left|X_{i_{0}}\right|+E \max _{i, j}\left|X_{i}-X_{j}\right| \leq E\left|X_{i_{0}}\right|+2 E \max _{i \leq n} X_{i}$.

Corollary 2.4.10

It is easier because it does not require $E X_{i}^{2}=E Y_{i}^{2}, i \leq n$.
Corollary 2.4.10
Let $X=\left(X_{1}, \ldots, X_{n}\right)$ and $Y=\left(Y_{1}, \ldots, Y_{n}\right)$ be two centred, jointly normal vectors in \mathbb{R}^{n}, and assume that

$$
E\left(Y_{i}-Y_{j}\right)^{2} \leq E\left(X_{i}-X_{j}\right)^{2}, i, j \in\{1, \ldots, n\} .
$$

Then

$$
E \max _{i \leq n} Y_{i} \leq 2 E \max _{i \leq n} X_{i} .
$$

Finally, we will apply the comparison results to obtain a lower bound for $E \sup _{t} X(t)$ where X is a Gaussian process.

The entropy lower bound will follow from the following evaluation of the maximum of a finite number of independent normal variables.

Lemma 2.4.11
Let $g_{i}, i \in \mathbb{N}$, be independent standard normal random variables. Then
a. $\lim _{n \rightarrow \infty} \frac{E_{\max _{i} \leq n\left|g_{i}\right|}^{\sqrt{2 l o g} n}}{}=1$, and
b. There exists $K<\infty$ such that, for all $n>1$,

$$
K^{-1}(\log n)^{1 / 2} \leq E \max _{i \leq n} g_{i} \leq E \max _{i \leq n}\left|g_{i}\right| \leq K(\log n)^{1 / 2} .
$$

Sudakov's lower bound

Recall that given a (pseudo-) metric space (T, d), $N(T, d, \epsilon)$ denotes the ϵ-covering number of (T, d) and the logarithm of the covering number of (T, d) is known as its metric entropy.

Theorem 2.4.12 (Sudakov's lower bound)
There exists $K<\infty$ such that if $X(t), t \in T$, is a centred Gaussian process and $d_{x}(s, t)=\left(E(X(t)-X(s))^{2}\right)^{1 / 2}$ denotes the associated pseudo-metric on T, then, for all $\epsilon>0$,

$$
\epsilon \sqrt{\log N\left(T, d_{x}, \epsilon\right)} \leq K \sup _{S \subset T, S \text { finite }} E \max _{t \in S} X(t)
$$

Sudakov's theorem

Corollary 2.4.13 (Sudakov's theorem)
Let $X(t), t \in T$, be a centred Gaussian process, and let d_{X} be the associated pseudo-distance. If $\lim \inf _{\epsilon \downarrow 0} \epsilon \sqrt{\log N\left(T, d_{X}, \epsilon\right)}=\infty$, then $\sup _{t \in T}|X(t)|=\infty$ a.s., so X is not sample bounded.

This corollary shows that if a centered Gaussian process X is sample bounded, then the covering numbers $N\left(T, d_{X}, \epsilon\right)$ are all finite.

Corollary 2.4.14

Stronger version :
Corollary 2.4.14
Let $X(t), t \in T$, be a sample continuous centred Gaussian process. Then,

$$
\lim _{\epsilon \rightarrow 0} \epsilon \sqrt{\log N\left(T, d_{X}, \epsilon\right)}=0
$$

Comparison with the upper bound in Theorem 2.3.6.

Lower bound for $E \sup _{t \in T}|X(t)|$ in Theorem 2.4.12 and the upper bound in Theorem 2.3.6 for X a centred Gaussian process with $X\left(t_{0}\right)=0$ a.s. for some $t_{0} \in T$.

Note that if $\log N\left(T, d_{X}, 1 / \tau\right)$ is bounded above and below by a constant times a regularly varing function of τ, then both bounds combine to give that there exists $K<\infty$ such that

$$
\begin{equation*}
\frac{1}{K} \sigma_{x} \sqrt{\log N\left(T, d_{x}, \sigma_{x}\right)} \leq E \sup _{t \in T}|X(t)| \leq K \sigma_{x} \sqrt{\log N\left(T, d_{x}, \sigma_{x}\right)} \tag{2.61}
\end{equation*}
$$

(Appendix) Theorem 2.3.6

Theorem 2.3.6

Let (T, d) be a pseudo-metric space, and let $X(t), t \in T$ be a stochastic process sub-Gaussian with respect to the pseudo-distance d, that is, one whose increments satisfy condition (2.36). Then, for all finite subsets $S \subseteq T$ and points $t_{0} \in T$, the following inequalities hold:

$$
\begin{equation*}
E \max _{t \in S}|X(t)| \leq E\left|X\left(t_{0}\right)\right|+4 \sqrt{2} \int_{0}^{D / 2} \sqrt{\log 2 N(T, d, \epsilon)} d \epsilon \tag{2.37}
\end{equation*}
$$

where D is the diameter of (T, d), and

$$
\begin{equation*}
E \max _{s, t \in S, d(s, t) \leq \delta}|X(t)-X(s)| \leq(16 \sqrt{2}+2) \int_{0}^{\delta} \sqrt{\log 2 N(T, d, \epsilon)} d \epsilon \tag{2.38}
\end{equation*}
$$

for all $\delta>0$, where the integrals are taken to be 0 if $D=0$.

Definition 2.2.3
확률과정 $X_{t}(t \in T)$ 가 표본유계 (sample bounded) \Leftrightarrow 어떤 X 의 version \tilde{X} 의 sample path 들이 거의 모든 ω 에 대해 고르게 유계, 즉 $\sup _{t \in T}|\tilde{X}|<\infty$ a.s..
(T, d) 가 (유사) 거리공간일 때 X 가 표본연속 (sample continuous) \Leftrightarrow 어떤 X 의 version \tilde{X} 의 sample path 들이 거의 모든 ω 에 대해 유계이고 고르게 연속.

Definition 2.2.1
지표집합 T 에 대한 확률과정 X, Y 가 각각의 유한차원 분포가 같으면 각각을 서로에 대한 version 이라 한다.

