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Anderson’s Lemma, Comparison and Sudakov’s Lower Bound

I Obtain a lower bound for E supt X (t)

in terms of the metrix entropy of the (pseudo-)metric space (T , dX ),

where X is a Gaussian process and d2
X (s, t) = E(X (t)− X (s))2.

I Anderson’s Inequality

I It is regarding the probability, relative to a certered Gaussian measure on

Rn, of a convex symmetric set and its translates,
I It is related to the fact that centered Gaussian measures on Rn are

log-concave.

I Slepian’s lemma : comparing the distributions of the suprema of the

processes.
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2.4.1 Anderson’s Lemma
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Lemma 2.4.1

I A set C in vector space is convex and symmetric if
∑n

i=1 λixi ∈ C

whenever xi ∈ C and λi ∈ R satisfy
∑n

i=1 |λi | = 1, n <∞.

I Given two sets A and B in vector space, their Minkowski addition is

A+ B = {x + y : x ∈ A, y ∈ B} and λA is defined as λA = {λx : x ∈ A}.

In this subsection, m will stand for Lebesgue measure on R for any n.

Lemma 2.4.1

Let A and B be Borel measurable sets in R. Then

m(A+ B) ≥ m(A) +m(B).
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Precopa-Leindler theorem

Theorem 2.4.2 (Precopa-Leindler theorem)

Let f , g , ϕ be Lebesgue measurable functions on Rn taking values in [0,∞]

and satisfying, for some 0 < λ < 1 and all u, v ∈ Rn,

ϕ(λu + (1− λ)v) ≥ f λ(u)g1−λ(v). (2.49)

Then ∫
ϕ dm ≥

(∫
f dm

)λ(∫
g dm

)1−λ
. (2.50)

Proof.

The proof is by induction on the dimension n.

For n = 1, theorem 2.4.1 is used.
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Log-concavity of Gaussian measures in Rn

Centered Gaussian measures on Rn are log concave.

Theorem 2.4.3 (Log-concavity of Gaussian measures in Rn)

Let µ be a centered Gaussian measure on Rn. Then, for any Borel sets A,B

in Rn and 0 ≤ λ ≤ 1, we have

µ(λA+ (1− λ)B) ≥ (µ(A))λ(µ(B))1−λ. (2.51)
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Anderson’s lemma

Theorem 2.4.4 (Anderson’s lemma)

Let X = (g1, . . . , gn) be a centred jointly normal vector in Rn, and let C be

a measurable convex symmetric set of Rn. Then, for all x ∈ Rn,

Pr{X + x ∈ C} ≤ Pr{X ∈ C}. (2.53)

Proof.

Let µ = L(X ). Let A = C + x , B = C − x , and λ = 1/2 in (2.51) and by

summetry of µ and symmetry of C , µ(A) = µ(B). So we obtain

µ(C) ≥ µ(C + x).
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Theorem 2.4.5

Theorem 2.4.4 Extends to infinite dimensions.

Theorem 2.4.5

Let B be a separable Banach space, let X be a B-valued centred Gaussian

random variable and let C be a closed, convex, symmetric subset of B. Then,

for all x ∈ B,

Pr{X + x ∈ C} ≤ Pr{X ∈ C}. (2.53)

In particular, Pr{‖X‖ ≤ ε} > 0, for all ε > 0.

Proof.

By Hahn-Banach separation theorem, ... For the last claim, apply the first

part to closed balls Ci = {x : ‖x − xi‖ ≤ ε} for xi countable dense subset of

B.
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2.4.2 Slepian’s Lemma and Sudakov’s Minorisation

10/22



2.4.2 Slepian’s Lemma and Sudakov’s Minorisation

I Useful identity regarding derivatives of the multidimensional normal

density.

I Let f (C , x) = ((2π)ndetC)−1/2e−xC−1xT /2 be the N(0,C) density in Rn,

where C = (Cij) is an n × n symmetric positive definite matrix

x = (x1, . . . , xn). Then

∂f (C , x)

∂Cij
=
∂2f (C , x)

∂xixj
=
∂2f (C , x)

∂xjxi
, 1 ≤ i < j ≤ n. (2.54)
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Theorem 2.4.7

Theorem 2.4.7

Let X = (X1, . . . ,Xn) and Y = (Y1, . . . ,Yn) be centred normal vectors in

Rn such that EX 2
i = EY 2

j = 1, 1 ≤ i , j ≤ n. Set, for each 1 ≤ i < j ≤ n,

C 1
ij = E(XiXj),C 0

ij = E(YiYj) and ρij = max{|C 0
ij |, |C 1

ij |}. Then for any λi ∈ R,

Pr
n⋂

i=1
{Xi ≤ λi} − Pr

n⋂
i=1
{Yi ≤ λi} ≤

1

2π

∑
1≤i<j≤n

(C1
ij − C0

ij )
+ 1

(1− ρ2ij )
1/2 exp

(
−

(λ2
i + λ2

j )/2

1 + ρij

)
.

(2.55)

Moreover, if µi ≤ λi and ν = min{|λi |, |λi | : i = 1, . . . , n}, then∣∣∣∣Pr
n⋂

i=1
{µi ≤ Xi ≤ λi}−Pr

n⋂
i=1
{µi ≤ Yi ≤ λi}

∣∣∣∣ ≤ 2

π

∑
1≤i<j≤n

|C1
ij −C0

ij |
1

(1− ρ2ij )
1/2 exp

(
−

ν2

1 + ρij

)
.

(2.56)
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Slepian’s lemma

It allows comparing the distributions of the suprema of X (t) and Y (t) if

the covariance of one of the processes dominates the other.

Theorem 2.4.8 (Slepian’s lemma)

Let X = (X1, . . . ,Xn) and Y = (Y1, . . . ,Yn) be centred jointly normal

vectors in Rn such that

E(XiXj) ≤ E(YiYj) and EX 2
i = EY 2

i for , 1 ≤ i , j ≤ n. (2.58)

Then, for any λi ∈ R, i ≤ n,

Pr

( n⋂
i=1

{Yi > λi}
)
≤ Pr

( n⋂
i=1

{Xi > λi}
)
, (2.59)

and therefore,

E max
i≤n

Yi ≤ E max
i≤n

Xi (2.60)
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Remark 2.4.9

Comparison of expected values of the maximum of absolute values.

Remark

For Xi symmetric, for any i0 ∈ {1, . . . , n},

E max
i≤n

Xi ≤ E max
i≤n
|Xi | ≤ E |Xi0 |+ E max

i,j
|Xi − Xj | ≤ E |Xi0 |+ 2E max

i≤n
Xi .
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Corollary 2.4.10

It is easier because it does not require EX 2
i = EY 2

i , i ≤ n.

Corollary 2.4.10

Let X = (X1, . . . ,Xn) and Y = (Y1, . . . ,Yn) be two centred, jointly normal

vectors in Rn, and assume that

E(Yi − Yj)
2 ≤ E(Xi − Xj)

2, i , j ∈ {1, . . . , n}.

Then

E max
i≤n

Yi ≤ 2E max
i≤n

Xi .
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Lemma 2.4.11

Finally, we will apply the comparison results to obtain a lower bound for

E supt X (t) where X is a Gaussian process.

The entropy lower bound will follow from the following evaluation of the

maximum of a finite number of independent normal variables.

Lemma 2.4.11

Let gi , i ∈ N, be independent standard normal random variables. Then

a. limn→∞
E maxi≤n |gi |√

2log n
= 1, and

b. There exists K <∞ such that, for all n > 1,

K−1(log n)1/2 ≤ E max
i≤n

gi ≤ E max
i≤n
|gi | ≤ K(log n)1/2.
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Sudakov’s lower bound

Recall that given a (pseudo-) metric space (T , d), N(T , d , ε) denotes the

ε-covering number of (T , d) and the logarithm of the covering number of

(T , d) is known as its metric entropy.

Theorem 2.4.12 (Sudakov’s lower bound)

There exists K <∞ such that if X (t), t ∈ T , is a centred Gaussian process

and dx(s, t) = (E(X (t)− X (s))2)1/2 denotes the associated pseudo-metric on

T , then, for all ε > 0,

ε
√

log N(T , dx , ε) ≤ K sup
S⊂T ,S finite

E max
t∈S

X (t).
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Sudakov’s theorem

Corollary 2.4.13 (Sudakov’s theorem)

Let X (t), t ∈ T , be a centred Gaussian process, and let dX be the

associated pseudo-distance. If lim infε↓0 ε
√

logN(T , dX , ε) =∞, then

supt∈T |X (t)| =∞ a.s., so X is not sample bounded.

This corollary shows that if a centered Gaussian process X is sample

bounded, then the covering numbers N(T , dX , ε) are all finite.
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Corollary 2.4.14

Stronger version :

Corollary 2.4.14

Let X (t), t ∈ T , be a sample continuous centred Gaussian process. Then,

lim
ε→0

ε
√

logN(T , dX , ε) = 0

.
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Comparison with the upper bound in Theorem 2.3.6.

Lower bound for E supt∈T |X (t)| in Theorem 2.4.12 and the upper bound in

Theorem 2.3.6 for X a centred Gaussian process with X (t0)=0 a.s. for some

t0 ∈ T .

Note that if logN(T , dX , 1/τ) is bounded above and below by a constant

times a regularly varing function of τ , then both bounds combine to give that

there exists K <∞ such that

1
K
σX

√
logN(T , dx , σX ) ≤ E sup

t∈T
|X (t)| ≤ KσX

√
logN(T , dx , σX ) (2.61)
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(Appendix) Theorem 2.3.6

Theorem 2.3.6

Let (T , d) be a pseudo-metric space, and let X (t), t ∈ T be a stochastic

process sub-Gaussian with respect to the pseudo-distance d , that is, one whose

increments satisfy condition (2.36). Then, for all finite subsets S ⊆ T and

points t0 ∈ T , the following inequalities hold:

E max
t∈S
|X (t)| ≤ E |X (t0)|+ 4

√
2
∫ D/2

0

√
log2N(T , d , ε)dε, (2.37)

where D is the diameter of (T , d), and

E max
s,t∈S,d(s,t)≤δ

|X (t)− X (s)| ≤ (16
√
2+ 2)

∫ δ

0

√
log2N(T , d , ε)dε, (2.38)

for all δ > 0, where the integrals are taken to be 0 if D = 0.
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(Appendix) Definition 2.2.1, 2.2.3

Definition 2.2.3

확률과정 Xt(t ∈ T ) 가 표본유계 (sample bounded) ⇔ 어떤 X 의 version X̃

의 sample path 들이 거의 모든 ω 에 대해 고르게 유계, 즉 supt∈T |X̃ | <∞a.s..

(T , d) 가 (유사) 거리공간일 때 X 가 표본연속 (sample continuous) ⇔ 어떤

X 의 version X̃의 sample path 들이 거의 모든 ω 에 대해 유계이고 고르게 연속.

Definition 2.2.1

지표집합 T에 대한 확률과정 X ,Y 가 각각의 유한차원 분포가 같으면 각각을

서로에 대한 version 이라 한다.
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