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Anderson’'s Lemma, Comparison and Sudakov's Lower Bound

» Obtain a lower bound for E sup, X(t)
in terms of the metrix entropy of the (pseudo-)metric space (T, dx),

where X is a Gaussian process and dx(s, t) = E(X(t) — X(s)).

» Anderson’s Inequality

> |t is regarding the probability, relative to a certered Gaussian measure on
R", of a convex symmetric set and its translates,
> It is related to the fact that centered Gaussian measures on R" are

log-concave.

» Slepian’s lemma : comparing the distributions of the suprema of the

processes.
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2.4.1 Anderson’'s Lemma
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Lemma 2.4.1

> A set C in vector space is convex and symmetric if -7 A\ix; € C

whenever x; € C and \; € R satisfy Y/, [Ai| =1,n < oo.

> Given two sets A and B in vector space, their Minkowski addition is
A+B={x+y:x€ A,y € B} and M is defined as NMA = {A\x : x € A}.

In this subsection, m will stand for Lebesgue measure on R for any n.

Lemma 2.4.1

Let A and B be Borel measurable sets in R. Then

m(A+ B) > m(A) + m(B).
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Precopa-Leindler theorem

Theorem 2.4.2 (Precopa-Leindler theorem)

Let f,g,¢ be Lebesgue measurable functions on R" taking values in [0, c0]

and satisfying, for some 0 < A <1 and all u,v € R",
oA+ (1= N)v) > A (u)g" 7 (v). (2.49)

Then

/ap dm > (/f dm)A(/g dm)l_A. (2.50)

Proof.

The proof is by induction on the dimension n.

For n =1, theorem 2.4.1 is used. O
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Log-concavity of Gaussian measures in R”

Centered Gaussian measures on R" are log concave.
Theorem 2.4.3 (Log-concavity of Gaussian measures in R")

Let ju be a centered Gaussian measure on R". Then, for any Borel sets A, B

in R" and 0 < X\ <1, we have

HOA T (1= N)B) = (u(A)) (u(B))* . (2.51)
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Anderson’s lemma

Theorem 2.4.4 (Anderson’s lemma)

Let X = (g1,...,8n) be a centred jointly normal vector in R", and let C be

a measurable convex symmetric set of R". Then, for all x € R",

Pr{X +x € C} < Pr{X € C}. (253)

Proof.

Let p=L(X). Let A=C+x, B=C—x,and A =1/2in (2.51) and by
summetry of y and symmetry of C, u(A) = u(B). So we obtain
1(C) = (€ +x). O
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Theorem 2.4.5

Theorem 2.4.4 Extends to infinite dimensions.

Theorem 2.4.5

Let B be a separable Banach space, let X be a B-valued centred Gaussian
random variable and let C be a closed, convex, symmetric subset of B. Then,
for all x € B,

Pr{iX +x € C} < Pr{X € C}. (2.53)

In particular, Pr{||X|| < e} >0, for all ¢ > 0.

Proof.

By Hahn-Banach separation theorem, ... For the last claim, apply the first
part to closed balls C; = {x : ||x — xi|| < €} for x; countable dense subset of

B. O
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2.4.2 Slepian’s Lemma and Sudakov's Minorisation
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2.4.2 Slepian's Lemma and Sudakov's Minorisation

» Useful identity regarding derivatives of the multidimensional normal
density.

> Let f(C,x) = ((27r)"detC)_l/ze_XCilXT/2 be the N(0, C) density in R”,
where C = (Cjj) is an n X n symmetric positive definite matrix
x = (x1,...,%n). Then

OF(C,x) _ 9*F(C,x) _ 0PF(C,x)

<i<j<n. .
9C, o B ,1<i<j<n (2.54)
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Theorem 2.4.7

Theorem 2.4.7

Let X = (X1,...,Xs) and Y = (Y1,...,Y,) be centred normal vectors in
R” such that EX? = EY? =1,1<i,j < n. Set, foreach1 <i <j<n,
Cj = E(XiX;),C) = E(Y;Y;) and pj = max{|C}|,|Cj|}. Then for any \; € R,

n n 1 1 (A2 +22)/2
Pr{Xi <Xt —Pr{Y <A< — X (G-t exp(f = .
i=1 i=1 27 4 <ici<n (- ppr/2 1+ pj
(2.55)
Moreover, if ui < X\ij and v = min{|\i|, |\i| : i =1,...,n}, then
n n 2 1 UZ
Pri{mi <X < A}=Pr({m <Y<} <= X IG-¢l exp| — .
i=1 i—1 T 1<i<j<n (1 —pp)t/2 1+ pj
(2.56)
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Slepian’s lemma

It allows comparing the distributions of the suprema of X(t) and Y/(t) if

the covariance of one of the processes dominates the other.
Theorem 2.4.8 (Slepian’s lemma)

Let X = (X1,...,Xn) and Y = (Y1,...,Y,) be centred jointly normal

vectors in R" such that
E(X:X;) < E(Y:Y;) and EX? = EY? for ,1 <i,j < n. (2.58)
Then, for any \; € R, i < n,
Pr(ﬁ{Yi > )\i}) < Pr(ﬁ{X; > )\;}), (2.59)
i=1 i=1
and therefore,

E max Y: < Em<axX,- (2.60)
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Remark 2.4.9

Comparison of expected values of the maximum of absolute values.

Remark

For X; symmetric, for any ip € {1,...,n},

Em<axX,- < Em<ax|X,-| < E|Xj| + Emax|X; — Xj| < E|Xj| + 2E m<axX,-.
i<n i<n IN i<n
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Corollary 2.4.10

It is easier because it does not require EX? = EY?,i < n.
Corollary 2.4.10

Let X = (X1,...,Xn) and Y = (Y1,...,Y,) be two centred, jointly normal

vectors in R", and assume that
E(Y;— Y <EXi—X;)?,i,je{1,...,n}.

Then

E max Y; < 2E max X;.
i<n i<n

15/22



Lemma 2.4.11

Finally, we will apply the comparison results to obtain a lower bound for

E sup, X(t) where X is a Gaussian process.

The entropy lower bound will follow from the following evaluation of the
maximum of a finite number of independent normal variables.

Lemma 2.4.11

Let gi,i € N, be independent standard normal random variables. Then

. Emaxi<, lg| _
a. ||mn*>oo W = ].7 and
b. There exists K < oo such that, for all n > 1,

K™ (log n)'/* < Emaxg; < Emax|gi| < K(log n)"/?.
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Sudakov's lower bound

Recall that given a (pseudo-) metric space (T,d), N(T,d,¢) denotes the
e-covering number of (T, d) and the logarithm of the covering number of

(T,d) is known as its metric entropy.
Theorem 2.4.12 (Sudakov's lower bound)

There exists K < oo such that if X(t),t € T, is a centred Gaussian process
and dx(s, t) = (E(X(t) — X(5))?)*/? denotes the associated pseudo-metric on
T, then, for all ¢ > 0,

evVliog N(T,ds,e) <K sup EmaxX(t).

SCT,S finite €S
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Sudakov's theorem

Corollary 2.4.13 (Sudakov’s theorem)

Let X(t),t € T, be a centred Gaussian process, and let dx be the
associated pseudo-distance. If liminf. o e/logN(T,dx,€) = oo, then

sup,e7 | X(t)| = oo a.s., so X is not sample bounded.

This corollary shows that if a centered Gaussian process X is sample

bounded, then the covering numbers N( T, dx, €) are all finite.
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Corollary 2.4.14

Stronger version :
Corollary 2.4.14

Let X(t),t € T, be a sample continuous centred Gaussian process. Then,

lim ev/logN(T,dx,e) =0
e—0
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Comparison with the upper bound in Theorem 2.3.6.

Lower bound for E sup,c+ [X(t)| in Theorem 2.4.12 and the upper bound in
Theorem 2.3.6 for X a centred Gaussian process with X(to)=0 a.s. for some
toec T.

Note that if logN(T,dx,1/7) is bounded above and below by a constant
times a regularly varing function of 7, then both bounds combine to give that

there exists K < oo such that

%ax\/logN(T, dv,ox) < Esup |X(t)| < Kox+/logN(T,dv,0x)  (2.61)
teT
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(Appendix) Theorem 2.3.6

Theorem 2.3.6

Let (T,d) be a pseudo-metric space, and let X(t),t € T be a stochastic
process sub-Gaussian with respect to the pseudo-distance d, that is, one whose
increments satisfy condition (2.36). Then, for all finite subsets S C T and

points to € T, the following inequalities hold:

D/2
Em€a$x|X(t)| < E|X(to)| +4\@/ \/Iog2N(T,d,€)de, (2.37)
t 0

where D is the diameter of (T, d), and

E  max  |X(t)— X(s)| < (16V2+2) /5 V/I0g2N(T,d,e)de, (2.38)

5,t€S,d(s,t) <5

for all 6 > 0, where the integrals are taken to be 0 if D = 0.
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(Appendix) Definition 2.2.1, 2.2.3

Definition 2.2.3
SENE Xi(t € T) 7} HE R (sample bounded) < O{E X 9 version X
9f sample path 0| 7{2] B£ w Of Cisf DEH] RH, = sup.er |X| < oca.s..

(T,d) 7} (BAf) Ha|E7F of X 7t HEHZL (sample continuous) < Of &
X 9] version X 2| sample path 50| 72| 2= w Of Clsf R7/0|0 D27 oI,

Definition 2.2.1
Z|H#Ze TOlf CHet 2HE2{E X, Y 7t 2f2te] Rotxpd E20f e

A1Z20j| CHSF version Of2} BHCF.
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